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ABSTRACT

A method has been developed for the area computation of a polygon on an ellipsoid. The sides of
this polygon may be geodetic lines, loxodromes, great circles or a combination of these lines.

INTRODUCTION

Boundaries of exploration or exploitation concessions on the Dutch Continental
Shelf are defined by parallels (loxodromes), great circles and sometimes even by
arcs of a circle. In order to compute the area of such a concession an algorithm was
needed that could process these types of lines. As algorithms for the geodetic line,
great circle and the loxodrome had been developed already and an equal area
projection is rather straightforward, it seemed a good idea to combine these
elements in a step-by-step process for computing polygonal areas.

First. if the polygon is known in polar co-ordinates. the formula will be given
for computation of polygonal areas in a plane.

Then the step-by-step process and the use of the mapping formulas will be
explained.

Next the computation of the correction on the step-by-step process will be
discussed.

And finally the mapping formulas for the Albers equal area projection will be
derived. In contrast with the derivation in Elements of map projection [3] the
formulae will be derived for computation directly from ellipsoid to cone; the step
of cemputing the authalic (equivalent) latitude on the sphere is omitted.

POLYGON AREAS

If the points and interpolating points of the polygon area on the ellipsoid are
equivalently projected in a plane (see Fig. 1) and if the points P,.P,..... P, in the
plane are defined by polar co-ordinates (p,,#,). p is the radius vector, @ is the
vectorial angle, then the area of polygon

P,.P,,....,P, =3lp, pssin(0,—0))+p,pysin(0,—0,)+. .. ’
(
b +/'n—1/)n Sin((}n _(}|1~|)+/)n/)l Sin(()l _()n)'

The formula is in absolute value, so the points P.P,,...,P, may be entered
counterclockwise or clockwise.
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Fig. 1.

THE STEP-BY-STEP PROCESS

Between the endpoints of the polygon interpolating points are computed along
the boundaries. Then all these points are mapped in the plane with the Albers
projection and the area is computed with formula (1). In general the geodetic line,
the loxodrome or any other line on the ellipsoid will be curved lines after projection
in a plane. To compensate for the curvature, interpolating points between the
endpoints of the sides of the polygon will have to be computed. If a side of the
polygon is defined by the geodesic between the polygon points P, and P,,, the
interpolating points between P, and P,,, are computed as follows.

(1) Compute the azimuth from P, to P,,, of the geodesic. e.g. with the method
of Vincenty [4].

(2) The distance from P, to the interpolating point is the chosen step size.

(3) Then the coordinates of the first interpolating point are computed directly
from azimuth and distance.

(4) The next interpolating point is computed in the same way from P, with the
same azimuth and twice the step size. ,

(5) This process is repeated until P,,, is reached.

If a side of the polygon is defined by the /oxodrome between the endpoints the
same procedure is applied, except that the direct solution of the loxodrome is used
for computing the interpolating points, for example with the method of Bowring
[1]. And for grear circles the same process can be applied. As a matter of fact the
same process may be used for any type of line as long as interpolating points can
be computed. Even polygons drawn on a map in any projection can be computed
by using the inverse mapping formulas for transformation of the endpoints and
interpolating points to the ellipsoid, and then with the Albers projection back to
the plane.
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MAPPING FORMULAE

The equivalent Albers projection employs a cone intersecting the ellipsoid at two
parallels known as the standard parallels. In general the projection is used to
represent a certain area, and consequently the standard parallels are chosen
accordingly. In this case the projection is used for computation purposes only, and
no relevant difference in the area computation caused by the choice of the standard
parallels was found.

The meridians are straight lines in this projection, so if the endpoints of a side
are on the same meridian, no interpolating points need to be computed.

The mapping equations for a point P given in latitude and longitude to P’ in
vectorial angle and radius vector or P(¢, A).yps0ia = P'(0, 0), e are:

2 2
p=\/[/ﬁ+% (l—e'z)(/i’l—/)’)J-

0 = nA,

where p is the radius vector, ¢ is the vectorial angle, n is the mapping factor for A,
A is the geodetic longitude. ¢ is the geodetic latitude, ¢, is the geodetic latitude of
standard parallel 1, ¢, is the geodetic latitude of standard parallel 2 and « is the
equatorial radius of the ellipsoid.

: . W
/=sing 1+Tsm'q+—§—sm 1 (3)
( cos®¢,  cos’g, )
by l—e*sin“¢, l-—e*sin’q, . ()

2(1=ed) (B—p3,)

For standard parallel 1:
acosq,

o= (5)

n(l—e*sin*q¢,)

The complete mathematical theory will be treated later on.

ACCURACY AND CORRECTION

As the sides of the polygon are approximated by interpolating points. which
after projection are as it were connected by straight lines for the area computation,
an error is introduced, the magnitude of which depends on the step size.

Theoretically one would expect the error to decrease quadratically with a
decreasing step size. Empirically this was confirmed if we have the step sizes s, and
s, with corresponding errors e, and e, and if

1
5, =-S5,
S oa

(6)

then e, = —¢,.
i

Knowing this the error can be computed and used as a correction.
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Suppose the true area is 4. The computed area with step size s, is 4, = A+e,.
The computed area with step size s, is 4, = 4 +e,.

Ad = (A+e)—(A+e) =e,—e,. 7

Substituting e, = 1/a*e, yields:

2]

Elfe,—-el =AA, =>e = 0 . sAA,. 8)

So if the area is computed twice, the second time with for instance half the step size,

the error can be computed as
?1 = _%AAt (9)

and can be used as correction.

Using the step-by-step process with this correction method for areas — with
geodesic boundaries — of any size there was no difference with the method of
Danielsen [2] on the square metre level.

The area of the complete ellipsoid (Hayford) computed with the formula for the
oblate ellipsoid is:

ol 2ﬂ(12+né€:1n¥ — 510100933.858 376 km?”. (10)

This area computed with the corrected step-by-step method is: area =
510100933.858384 km>. With step sizes of 500 m and 250 m. the difference was
0.000008 km?. or 15.7x 107® p.p.m.

MATHEMATICAL THEORY OF THE ALBERS PROJECTION [3]

If a is the equatorial radius of the ellipsoid, e the eccentricity, and ¢ the latitude,
the radius of curvature of the meridian is given in the form

a(l—e*)

=— 11
o (1—e€*sin’q): (1
and the radius of curvature perpendicular to the meridian is equal to
a
P (12)

The differential element of length of the meridian is therefore equal to the
expression
a(l —e*) dg

dm = T 13
(1—e*sin*q): S
and that of the parallel becomes
o acosqdl ] (14)

T (1—e sin?g)t’
in which A is the longitude in radians.
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The element of area on the ellipsoid is thus expressed in the form

a*(1 —e*)cosq dy dA
(1—e?sin®¢)®

dS = dmdp = (15)
We now wish to determine an equal-area projection of the ellipsoid in the plane.
If p is the radius vector in the plane, and 0 is the angle which this radius vector
makes with some initial line, the element of area in the plane is given by the form

dS’ = pdpdh. (16)
p and 0 must be expressed as functions of ¢ and A, and therefore
C‘l A
dp = é—gdq +%(M (17)
= "‘/)
and df) = E,qu +£.—(/,\. (18)
&g ' EA

We will now introduce the condition that the parallels shall be represented by
concentric circles: p will therefore be a function of ¢ alone. or

dp=Ldy. (19)
C 'q

As a second condition. we require that the meridians be represented by straight
lines. the radii of the system of concentric circles. This requires # to be independent
on ¢. or

Ct)
di = = d. (20)
('/\

Furthermore. if # and A are to vanish at the same time (if A = 0 then ¢/ = 0 and vice
versa). and if equal differences of longitude are to be represented at all points by
equal arcs on the parallels, # must be equal to some constant times A. or

g = H. (2h
in which # is the required constant. This gives us
df = ndA. (22)

By substituting these values in the expression for dS". we get
’ E/) g
IS" = p=—ndq dA. 23)
¢ /)f‘q'”(q ¢ (22

Since the projection is to be equal-area,
dS’ = —dS. (24)
The minus sign is explained by the fact that p decreases as ¢ increases, or

a*(1 —e*)cosq dg dA

Ppn ly dA
V=R Uy = — TR
/[.?q‘ ' (1 —e*sin“g)*

96



By omitting dA we find that p is determined by the integral

" 6;) (12(1—(’2) ] cosg dq”
—dg =— —. 26
,[,/)Eq ! n _[,(I—e'*sm'q‘)' (26)
If R represents the radius (p(0)) for ¢. = 0, this becomes
. 2a%(1—€*) ("  cosqdg
P~ RP=— ! 27
F—X n fo(l—ezsinzq)g 7
Because
1 MY L P T
e Qe 2 2 2 3
[~ sy 1 +2e*sin*¢ + 51 (e*sin*q)
2Q+D2+2), , ., .
+%(€‘sm'q)3+... (28)
we get:
V2 e S 't
P R = _2a'(1-¢€%)
n 0
x (cosq +2e*sin®¢ cosq + 3¢ sin ¢ cos¢ +4esinqg cosq¢)dg  (29)
Y2 T — o2 o 1
or /;Q—R'l:—i(l’?—f—)(sinq +?sin:’q+3%sin5¢+...) (30)
y . A ) ;
or p* = R‘—T(l —e%)#:  general equation for p. (31

The two constants # and R are as yet undetermined.

Let us introduce the condition that the scale shall be exact along two given
parallels. On the ellipsoid the length of the parallel for a given longitudinal
difference A (A = A,—A,) is equal to the expression

"Z p
2, (1—e*sin?q): (I —e*sin*q):

On the map the arc P is represented by
pO = pnA. (33)

On the two parallels along which the scale is to be exact. if we denote them by
subscripts, we have

. (W (34)
(1 —e€*sin*q,):
or, on omitting \, we have
= (33)
n(l—e*sin*¢,):
and Py = et (36)

n(l—e*sin?q,):
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Substituting these values in turn in the general equation for p, we get

20 a*costy
o 2 ooty 37
- (I—e%)p, n*(1 —e?sin’g,) o
2a® \ a*cos’g
B TEDEG 38
R . {1—-&) 8, n*(1 —e?sin®g,) o
By subtracting
» ~ _ Cos‘.’(pl _ COquf'g
2n(1—-e*)(B,—p,) 1—e®sin*q, 1—e€’sin’g, >
on reducing, we get
2 2ain2 * ~#"sin’
g = (€os¢,/1—e’sin*g,) —(cos’¢,/1 —e"sin ¢2). (40)

2(1—¢%) (Ba—15)

By substituting the value of » in the above equations, we could determine R, but
_we are only interested in cancelling this quantity from the general equation (31)
for p:

2a*(1 —é?) ;

=K — /- (41)
Y21 — o2
Y .l i (1” g (42)
By subtracting we get
2a° "
pPP—pi= ,i:(l ~e* ) — ) (43)
2 2 ] — 2
and so p= A/[p';’%—a—(n—-f—z(/)’, —/})}.
Already we have found '
0 = nA.
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